
AD-A251 3,57 L 2

In-House Report
April 1992 *4f

LARGE-SCALE BATTLEFIELD SIMULATION
USING A MULTI-LEVEL MODEL
INTEGRATION METHODOLOGY

Alex F. Sisti v iA _~

APPROVED FORP118L/C RLS4EAS7ISRIBUniON UNLIMIED.

92-15796

9 2 6 71
Rome Laboratory

Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign nations.

RL-TR-92-69 has been reviewed and is approved for publication.

APPROVED:

THADEUS J. DOMURAT, Chief
Signal Intelligence Division

FOR THE COMMANDER:

GARRY W. BARRINGER
Technical Director

Intelligence & Reconnaissance Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (IRAE), Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document require that it be returned.

PAGEForm Approved
PLA* r@P~Wdn for, fu 1.cw d rtamufro wymu tosvumgB ih.tpu wm=Lkx*-i taU.ttr ~ ~Lw md-g~i uScs

cod~ci fyr- W mck0Q~mfw ewc tU burt @~to es.nu tum~0 1ar u twrmxrc Opinai ".Repens.1215 efeoOavuHi#VeuySaA 1204 Aifr%~VA2 =4 wwito tuOfrimd~Mumrw. wi B'uzigPqmw.i R~dtioPrw (070401 SM.Wa~w~c DC 205m
1. AGENCY USE ONLY (Leave BlanIo 2 REPORT DATE aREPORT TYPE AND DATES COVERED

]April 1992 In-House Nov 91 - Dec 91
4. TfTLE AND SUBTTTLE 5. FUNDING NUMBERS
LARGE-SCALE BATTLEFIELD SIMUJLATION USING A MULTI-LEVEL PE - 62702F
MODEL INTEGRATION METHODOLOGY PR - 4594

6. AUTHOR(S) TA - 15
Alex F. Sisti WU- I5

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES) &PERFORMING ORGANIZATION
Rome Laboratory (IRAB) REPORT NUMBER
Griffiss AFB NY 13441-5700 RL-TR-92-69

9. SPONSORINGiMONrTORNG AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINaiMoNrORING
Rome Laboratory (IRAE) AGENCY REPORT NUMBER
Griffiss A.FB NY 13441-5700

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Alex F. Sisti/IRAE/(315)330-4518

1 2& DISTRIBUT1ONIAVAILABIL1TY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Mm, 2m wa-

This report addresses the problems inherent in the modeling of large-scale and
complex software systems in general, and specifically how those problems have affected
simulation systems designed to evaluate two particular thrusts in combat simulation:
Electronic Combat effectiveness and Non-Cooperative Target Identification (NCTI).
Conceptual improvements and potential solutions are offered, leading to an in-depth
discussion on a variety of disparate, yet related subject areas. Finally, recommen-
dations are outlined as to future areas of research meriting increased investigation.

14. SUBJECT TERMS I1s NUMBER OF PAGES
Simulation, Hierarchy of Models, Model Integration, Software Reuse,36
"Software Zoom", NCTI modeling i a PP4CE CODE

17. SECURITY CLASSIFICATION 18. SECURI TY CLASSIFICATION 19. SECURrrY CLASSIFIATION 2Q. UMITATION OF ABSTRACT
OUeSIFIED OFUffflFIED UNCLASSIFIED U/L

N4SN 7540-M-a.~a Stwc.a Fc,, 290 (Rev 2-M9
Plow~s by ANSI Stel Z39 18
20&102

PART I: Theoretical Background Issues ... 1

The Problem ... 1

An Answer ... 2

Modularity ... 2

Software Reuse .. 4

Hierarchical, Modular Modeling .. 7

Reuse Systems and Component Coupling .. 9

Reuse and M odularity Applied to M odeling and Simulation 11

Some Thoughts on M ulti-Level Model Integration ... 1 2

Some Analogies in the Real W orld ... 1 3

The 'Software Zoom' Concept .. 1 5

Another Analogy ... 1 5

PART II: Battlefield Simulation (The Concepts are Applied) 1 6

Validated Analytical Hierarchy of M odels (VAHM) 1 6

Application 1: Electronic Combat Effectiveness .. 1 8

A Solution .. 1 9

Application 2: Non-Cooperative Target Identification (NCTI) 2 0

A Solution .. 2 1

PART III: Conclusion ... 22

Acoession For

NTIS GRA&I~ IC TAB El
.arir~nced

- By.

D i h :i": t v:

D ist b. tp : --i 'I: l ., ,

Summary This report addresses the problems inherent in the modeling of large-
scale and complex software systems in general, and specifically how those
problems have affected simulation systems designed to evaluate two particular
thrusts in combat simulation: Electronic Combat effectiveness and Non-
Cooperative Target Identification (NCTI). Conceptual improvements and
potential solutions are offered, leading to an in-depth discussion on a variety of
disparate, yet related subject areas. Finally, recommendations are outlined as to
future areas of research meriting increased investigation.

PART I: Theoretical Background issues

The Problem

The results of large-scale, monolithic battlefield simulation analyses have
generally been coldly received, and with good justification. A scenario of
realistic proportions could conceivably involve the modeling of hundreds of
thousands of entities, dynamically interacting among themselves, and reacting
to other (simulated) activity in their environment. Even given the substantial
hardware improvements in the form of larger, faster memories and
exponential increases in processing power, it is still impossible to do an analysis
at anything less than a grossly aggregated level. It is becoming increasingly
imperative that analyses of this sort pay more attention to the underlying details
of the entities being modeled; especially since decisions based on these results
could ultimately involve human life. As part of a panel discussion at the 1983
Winter Simulation Conference, panel chairman Kenneth Mussleman remarked
"Aggregated measures are used to draw conclusions about system performance,
while the detailed dynamics of the system go virtually unnoticed ... A decision
based solely on summary performance could lead to unacceptable results ... It
makes practical sense for us to learn how to properly amplify these details and
to incorporate them into the evaluation process." One of the possible
alternatives implied by this quote would be to accurately and completely model
every entity in the scenario such that its associated details are therefore
incorporated into the scenario. This approach is obviously discarded in light of
the size and complexity of the simulation, as well as cost, time and resource
constraints implied by such an approach.

• .. =.= =n. m ,i m ann mumnn nn mm imn no nu im i 1

An Answer

So how then can we model a large-scale, complex software system which would
allow us to accurately draw conclusions about detailed performance of a system
component or technique within that overall system framework? With the
rejection of the extremes (i.e., aggregate analysis based on coarsely represented
entities versus completely detailed analyses), what remains is: 1) modeling the
complete system from a variety of points of view, or 2) modeling only selected
entities/areas of interest or 3) modeling the entire system, following a
convention of multiple levels of representation, such that the entities are
modeled at varying levels of detail, ranging from the top-level representation of
the "essence" of the entity, to the lowest level, which would model the entity in
great detail. This clearly has shown the most promise, and brings to bear a
variety of technical, theoretical and practical aspects; including modularity,
soft, iare reuse, object-oriented design, a hierarchy of models in a component
library, a model management system for manipulating that library, and
software engineering principles in general.

Modularity

Modularity is defined as breaking a software system into smaller and simpler
parts or modules such that the modules together perform as the system. In the
historical sense, a subroutine is functionally equivalent to a module which can be
used repeatedly (and only when desired) in different places in the system.
Breaking a large task into smaller, more tractable pieces is certainly not new; it
is a time-honored method of increasing productivity in many manufacturing
disciplines. It is therefore only natural that the earliest approach away from the
traditional monolithic development of software systems was to modularize -- to
decompose the system at the functional level and to group related functions
together.

Leading the maturation of modularity is the thrust for improvements in the
general area of software engineering principles, the foremost being the concepts
of data abstraction, encapsulation and information hiding. Data abstraction
refers to the process of hiding the implementation details of an object (e.g.,
program, data) from the users of that object; also called "information hiding" or

2

encapsulation". Abstract data types describe classes of objects as a function of
their external properties as opposed to their specific computer representation.
Deemphasizing a data type's representational details in this way can help
eliminate problems of design changes, hardware changes and version
compatibility. In other words, as the system undergoes a normal evolution, the
actual implementation may be changed without affecting the users of the
system. Examples of information likely to be hidden includes peculiarities of the
underlying hardware, algorithms to implement a feature specified by the
interface, representational details of data structures, and synchronization
schemes.

Modular techniques formally began being embodied in programming languages
in the mid-1970s with the development of Modula-2, with its "modules", and
later, with Ada and its "packages". Still other, more conventional languages can
now provide assistance in simulating data abstraction. These modular units
contain separate sections for interface specifications and for implementation
specifications, thereby supporting data abstraction. Making up the interface
section would be information specifying type, data and procedures exported by
the module, while the implementation section would contain the executable
statements of the interface section, along with locally-used type, data and
procedural declarations. Users wishing to invoke such a module to perform its
function can access it through the interface section, but consistent with
information hiding, cannot see (or affect) how that function has been
implemented. The application of data abstraction and of a sister technology
thrust, object-oriented design, will be discussed in a later section of this report.

As alluded to earlier, the reasons for modularity are many. A partial list follows:
1. Modularity facilitates writing correct programs. Smaller, more
tractable modules, based on sound software engineering principles, are
less susceptible to errors.
2. Modular code is easier to design and write. A software design engineer
merely has to specify the functional essence of a module in a traditional
top-down manner, rather than all of its internal and external details.
Actual coding is then facilitated by this visibility of the design structure.
3. A modular approach to a system development allows many
programmers to contribute to that development, in parallel. Domain-

3

specific individual programmers can work on separate functional pieces,
guided by the fact that interactions between parts of a system are rigidly
restricted to the allowable interactions between those individual pieces.
4. Modularity facilitates easier maintenance as the system evolves. Since
almost all large-scale software systems change as the requirements,
methodologies or users change, it is essential that a system be easily
reconfigurable and maintainable. Since modularity stresses the distinction
between implementation changes and interface changes, modifications to
the implementation may take place with confidence that inconsistencies
will not be introduced to other parts of the system.
5. Modularity facilitates testing, verification and validation. Individual
components can be "locally" tested, then fit into the system and re-tested.
Furthermore, some applications have exploited modularity to the point of
replacing software components with the hardware being simulated.
6. Modularity allows a component hierarchy to be exploited. The concept
of a module hierarchy was alluded to earlier in the context of modeling
components of a system at varying levels of detail. Bernard Zeigler, who
has written many articles on the subject of hierarchical modular modeling
[4,7,8,11,36] makes the point that "...models oriented to fundamentally the
same objectives may be constructed at different aggregation levels due to
tradeoffs in accuracy achievable versus complexity costs incurred."
Hierarchical modeling will be discussed in much greater detail in later
sections.
7. Lastly, and most important, modularity permits software reuse.

Software Reuse

The process of combining and building up known software elements in different
configurations (also called synthesis) has been likened to Gutenberg's concept of
removable type. Gutenberg's contribution has historically endured the criticism
of purists who argue that his printing press was not so much an invention, as a
new application of existing technologies at the time. To that, Douglas
McMurtie responded in "The Book", "It does not at all minimize the importance
of the invention ... to point out that the invention was the result of a process of
synthesis or combination of known elements. For that power of the human mind
which can visualize known and familiar facts in new relations, and their

4

application to new ones -- the creative power of synthesis -- is one of the highest
and most exceptional of mental faculties."

The idea of software reuse is certainly not new. Reuse and reworking has been
practiced in one form or another since the 1950s; however, the landmark paper
in this area is that of M.D. McIlroy's "Mass-Produced Software Components",
published in 1968. In that paper, he envisioned and proposed a catalogue of
software components from which "software parts could be assembled, much as
done with mechanical and electrical components."

Software reuse is defined as the isolation, selection, maintenance and use of
software components in the development and maintenance of a software
project. Soundly based on the principles of modularity, it has been shown to
improve productivity by using previously developed and tested components.
Reusable components of a software system include design concepts, functional
specifications, algorithms, code, documentation and even personnel. These
components embody the various degrees of abstraction which pervade the
process of classifying reuse items. Higher degrees of abstraction imply a greater
likelihood for reuse. For example, specifications do not yet contain detailed
representation details or implementation decisions, so the potential for reuse is
greater, while it is very difficult to find pieces of code which can be used without
some modifications.

Strictly speaking, software reuse must be distinguished from redesign or
reworking. Reuse means using an entity in a different context than what was
initially intended, and is also known as "black box" reuse. Redesign or reworking
refers to the modification of an existing module before it is used in its new
setting. This is known as "white box" reuse, and is by far the more common of
the two.

Historically, the classical reusability technique has been to build libraries of
routines (e.g., subroutines, functions, procedures), each of which is capable of
implementing a well-defined operation. These routines are generally written in
a common language for a specific machine, and are accessed by a linker as
needed. Although this approach has met with some degree of success in
numerical applications, there are some obvious problems which preclude using it

5

to implement a generally applicable reuse system. Subroutines are too small,
representation and implementation details have been filled in, and the glue
(interface requirements) necessary to bring many subroutines together is too
extensive to make general reuse feasible.

A second approach to reducing or eliminating the software development process
takes the form of software generating tools. Software generation has been
successfully applied in narrow, well specified domains (e.g., report generators,
compiler-compilers, language-based editors), but shows little chance of being
used outside these very specific domains. This is primarily because the nature of
program generators is such that the application area needs to be very well-
defined to achieve the desired level of efficiency.

The third and most promising approach for achieving reusability is based on a
technique called object-oriented design. Under object-oriented design, the
decomposition of a software system is not based on the functions it performs,
but on the classes of objects the system manipulates. Object-oriented
programming and languages support the notions of data abstraction, and
encapsulation, as described above, and therefore exhibit the flexibility necessary
to define and compose reusable components. Some of the more prevalent
object-oriented languages include C++, Objective-C, Simula, Smalltalk and
some extensions of Pascal and Lisp. In addition, object-oriented principles and
constructs are being implemented (or simulated) in other, more conventional
languages; especially those which support data abstraction.

Assuming, as many practitioners have, that an object-oriented approach is the
best way to describe a software reuse system, many other questions arise. How
should existing systems be decomposed? What system fragments are candidates
for reuse? How should these candidates be represented and stored? How should
they be accessed? Once located, how should they be coupled with other
candidate modules, such that together they perform as the system? In the section
that follows, these questions are addressed.

6

Hierarchical, Modular Modeling

Arguably the most prolific of the authors and researchers in the domain of model
integration is Bernard P. Zeigler, who first referred to the concept in a 1976 book
entitled "Theory of Modeling and Simulation." In that book, he quietly
introduced the idea of decomposition of existing models in a hierarchical
manner, corresponding to the levels of functional detail. Zeigler [11], discussing
the theoretical aspects of decomposition in a hierarchical sense based on varying
degrees of detail, states "...specification of design in levels in a hierarchical
manner [implies] the first level, and thus the most abstract level, is defined by the
behavioral description of the system. Next levels are defined by decomposing
the system into subsystems (modules, components) and applying decompositions
to such subsystems until the resulting components are judged not to require
further decomposition.. .Therefore, the structure of the specification is a
hierarchy where leaf nodes are atomic models (cannot be decomposed any
further)." Hierarchical decomposition/ representation is fairly extensively
treated in the literature; by Zeigler and others.

Zeigler discusses the process of aggregating the details of what he calls base
models into "lumped" models. A lumped model includes the functional coverage
of one or more detailed component (base) models, modeled with less detail. This
involves a simplification process in which the description of the base model is
modified in one of the following ways: 1) one or more of the descriptive
variables are dropped and their effect accounted for by probabilistic methods, or
2) the range set of one or more of the descriptive variables is coarsened, or 3)
similar components are grouped together and their descriptive variables are
aggregated. Finally, he pursues a mathematical approach to valid
simplification, based on "structure morphisms" at various levels of specification.

In later works, he refined his ideas, and changed the term "lumped" model to
coupled model. Most of his contributions to the literature now revolve on his
hierarchical, modular composition techniques or actual implementations of his
concepts. He says [81 "Considering a real system as a black box, there is a
hierarchy of levels at which its models may be constructed ranging from purely
behavioral, in which the model claims to represent only the observed
input/output behavior of the system, up to the strongly structural, in which

7

much is claimed about the structure of the system. Simulation models are usually
placed at the higher levels of structure and they embody many supposed
mechanisms to generate the behavior of interest."

Central to his hierarchical scheme is the composition tree, which describes how
components are coupled together to form a composite model. In his words,
"Suppose that we have models A and B in the model base. If these model
descriptions are in the proper form, then we can create a new model by
specifying how the input and output ports of A and B are to be connected to each
other and to external ports, an operation called coupling. The resulting medel,
AB, called a coupled model is once again in modular form ... modularity, as used
here, means the description of a model in such a way that it has recognized input
and output ports through which all interaction with the external world is
mediated. Once in the model base, AB can itself be employed to construct yet
larger models in the same manner used with A and B. This property, called
closure under coupling, enables hierarchical construction of models." Noting the
dual relationship of system decomposition and model synthesis, he remarks that
the coupling of two atomic models A and B is associated with the decomposition
of the composite model AB into components A and B.

In Zeigler's scheme, which has already been applied to a variety of disciplines,
there are three basic parts to the description of an atomic model: 1) the
input/output specification, explicitly describing the input and output ports and
the ranges their associated variables can assume, 2) the state and auxiliary
variables and their ranges (the static structure) and 3) the external and internal
transition specification (the dynamic structure). The descriptions for coupled
models differs slightly, in that information pertaining to the coupling process is
also included. Separate files containing interface specifics are maintained for
each component and facilitate the coupling of selected models.

There are three facets to Zeigler's coupling scheme. First, there is a file which
contains information relating the input ports of the composite model to the input
ports of the components (called external input coupling). Next, external output
coupling tells how the output ports of the component model are identified with
the output ports of the components. Finally, internal coupling information is
maintained, telling how the output ports of the components are connected to

8

input ports of other components; in other words, it describes how the
components inside a composite model are interconnected. Following the
principles of abstraction and object-oriented design, all interaction with the
environment is mediated through these input and output ports, regardless of the
internal implementations of the models. Furthermore, the sending of external
events from the output port of one component to the input port of another
component can be likened to message passing; another composition technique
supported by object-oriented design.

This multifaceted, hierarchical modular modeling concept has been successfully
applied in other disciplines; and each time, is improved upon to some degree.
The lion's share of his .'esearch has been in the representational details of the
model base (the component library) and to a limited extent, maintenance of that
library -- in essence, a Model Management System (MMS). [Model
Management has recently been extensively studied and applied by Benn
Konsynski and others [37-44] in relation to its function in a Decision Support
System. Essentially, it is an instantiation of a library management system
alluded to earlier; providing for the creation, storage, manipulation and
accessing of models in a model base. In other words, an MMS is to the Model
Base what a DBMS is to a database. It is the cornerstone of a software reuse
system, and can be extremely complex in design. Much of the literature in this
area confines itself to presenting knowledge representation schemes for
implementing a conceptual MMS, but little has been formally done as far as
actually building one. Most often, a manual, brute force approach is taken for
Model Base population and manipulation. A complete technical discussion of the
theory and implementation of Model Management Systems is well beyond the
scope of this report; however, the interested reader can find a wealth of
information on the subject in the works mentioned above].

Reuse Systems and Component Coupling

The most difficult aspect of the conceptual reuse system deals with coupling, or
integrating, existing components together in some manner, to replicate the
desired functionality of the system. The benefits of component coupling were
discussed in an earlier section of this report. Therefore, this section will address
the implementation aspects of component coupling.

9

Whereas system decomposition is viewed as a classic application of top-down
design, component synthesis takes a bottom-up approach. Candidate
components meeting the input specifications are put together like building blocks
to construct a software system capable of solving the problem. As discussed
earlier, these individual components should satisfy the software engineering
principles of abstraction, encapsulation and information hiding to reduce the
amount of (usually manual) modification needed to integrate them. Software
components written in languages which support those features are obviously
most desirable from an integration point of view, but that is not to say that
software (subroutines, functions etc.) written in a conventional language cannot
be used. Again, one of the major design considerations of a reuse system
involves possible workarounds because of a desire to retain an expensive or
"key" piece of legacy software.

There are two fundamental ways components can be integrated, depending on
the degree of interaction required and inter- and intra-dependence of individual
components. In the first and simplest case, software modules are run separately
and sequentially, using outputs of one component as inputs to the next
component to be executed. This method, alternately called chaining or the UNIX
pipeline method, is the most straightforward method of integration, and is
easily implemented; although some interim transformations or analysis may be
required. The second integration method is more complex (often impossible) and
is employed when the components are expected to interact with each other. The
composition principle used in this case is based on inheritance and message-
passing. As expected, the components in a reuse library using this integration
method should preferably be those which embrace the policies of object-oriented
design, as their interface details are well specified and they can be bound with
other components without the internal (implementation) details of the
components being known. Object-oriented programming also supports the
concepts of object classes and the message-passing between objects. The notion
of inheritance is applied in passing messages between classes and subclasses
(parents and children). When a new object is sub-classed from a more generic
parent class, capabilities common to both are implemented. In addition to being
able to process any message that the parent class can (by passing off to the more
generic parent), the sub-class can locally process messages which are specific to
itself. Again, Ada's "generic packages" and Modula's "modules" meet these

10

objectives. Another useful construct in Ada and some other object-oriented
languages which helps facilitate integration is known as "overloading".
Overloading allows more than one meaning to be attached to a name. To use an
example from the literature, giving the name "Search" to all associated search
procedures enables the user (or the library management system) to always
invoke a search operation in the same manner, regardless of the implementation
chosen, or the data types. Still another construct being advocated is that of
semantic binding. This applies to the flexibility needed when referencing across
different domains. The calling component must refer to items it expects in its
context, and since it cannot know the items' names in advance, it should be able
to refer to them semantically.

One can perhaps begin to see the intricacies involved, and the enormous
representational decisions required in developing a reuse system. Reuse systems
and their associated tools are costly in terms of time, money and personnel, and
even then are often dismissed as unfeasible due to lack of reliable, reusable
components. Contractors are hesitant to build software that is too reusable for
fear that there may be no "next job" for them. Even the "not invented here"
syndrome causes resentment among management and system users. Most
importantly, reuse systems have proven to be very application-dependent, with
some applications providing a more mature technology base on which to build
such a system. One such application area is in support of Modeling and
Simulation.

Reuse and Modularity Applied to Modeling and Simulation

Reese and Wyatt [11 speaking at the 1987 Winter Simulation Conference stated
"The issues of reusability ... apply to all types of software, including simulation
software ... Adoption of a reuse philosophy and the subsequent creation of a
reuse library by management is expected to improve the simulation software
development process and increase the credibility of simulation results." In
addition to the standard components mentioned in earlier sections of this report,
there are some support functions which are fairly specific to modeling and
simulation, and are required by nearly all discrete simulation applications.
Examples of such functions are: time management; queue management; random
number generation; data I/O; input sequence front-ends; debug routines;

11

validation and verification tools; graphical/statistical analysis tools, and
animation tools. Obviously, the functions of individual model components are
also amenable to reuse technology. In the sections that follow, the discussions on
reuse are instantiated to the field of modeling and simulation technology. As
part of this instantiation, some of the previously used terms will be changed for
clarity. That is, components will be called models; the component library will be
designated the Model Base; the library management system will be referred to
as the Model Management System (MMS), and component coupling will, in
general, be known as model integration.

Some Thoughts on Multi-Level Model Integration

In general, the fields of software reuse and model integration are so new that
there is no set formula for deciding what components need to be modeled in
finer detail, or how to integrate models of greater fidelity into an already
existing software system. Actually, although model reuse and integration
present some interesting design problems of their own, the basic issues directly
mirror those facing designers of all simulation systems, whose job it is to try to
capture the behavior of some real-world process or entity. Briefly, this design
phase is characterized by an iterative approach (see Figure 1), consisting of the
following steps: Step 1) the real-world process of interest is identified, Step 2)
the behavior of the process is roughly modeled, by capturing and coding the
knowledge of domain experts, Step 3) that computer model is executed, Step 4)
the results go through a process of data reduction and analysis, and Step 5) the
fidelity of the model is either increased or decreased. This reworked model then
undergoes as many iterations of execution/ analysis/ modification as necessary;
that is, to the point where the domain expert is satisfied with the results of the
computer representation of the behavior of the real-world process (Step 6). This
digital representation could be anything from a compute-intensive, highly
complex interaction of hundreds of input and/or control parameters, to a one-
line probabilistic draw.

In either case -- original design and development of a simulation model or the
integration (or redesign) of existing models -- the question is essentially the
same: What portions of the system need to modeled in

12

REAL WORLOL SWULATIUR 1

1.PROCES X-------

4. DATA EDUATIO

ANDE REWRKOFPRCESS

Of RFALUOEL!

detail? Stated most simply, the answer is those elements which provide the
greatest increases in the validity of the simulation results, while imposing the
smallest degradation of performance of that simulation. This implies that there
is some "break-even" or "crossover" point(s), arrived at by serious advanced
study and planning, including discussions with domain experts (Step 2 above) to
determine a) which elements are necessary and/or sufficient, b) which are useful,
but whose inclusion might impose a less-than-acceptable performance penalty
and c) which elements are just "window-dressing". More than likely, there will
need to be a series of independent, statistically-driven experiments performed to
converge on the "break-even" point; however, the theory and mechanics of
experiment design and interpretation are far beyond the scope of this report.
Rather, the remainder of this report will focus on of some of the ideas and
lessons learned from past integration efforts, as well as presenting some visual
and textual analogies that will hopefully foster a fuller comprehension of model
integration. ,

Some Analogies in the Real World

Unquestionably the easiest way to understand even the most abstract concept is
to be able to visualize it; and similarly, the easiest way to visualize a difficult
concept is to draw an analogy in the real world, and to map it to the conceptual
problem space.

13

Recalling our conundrum -- the integration of an existing, detailed component
into a larger existing system, and how to resolve disparate levels of detail and
the interface specifics involved in that integration -- it may be helpful to look at
the most complex 'system' ever devised: the human body. As useful and efficient
as this system may be, at times parts break down and must be reworked; and
sometimes even replaced. We call this operation a transplant, and that is the
analogy to be presented here.

When the human system fails to perform efficiently, yielding less-than-
satisfactory results, it undergoes a series of tests to isolate the problem. In the
case of faulty components, most times they can be fixed. However, in some
cases, a component is so irreparably damaged that it no longer adequately
serves the purpose for which it was intended. At that point, there begins a series
of discussions with the resident domain experts, as to a) whether or not that
component is still essential to a satisfactory functioning of the system, b) the
'value-added' to the system, versus the 'cost' of bringing in a replacement
component, c) the availability of replacement components, d) the level-of-detail
of the replacement component (in essence, a determination of whether to
"swap" the existing component with a similar component or to bring in a "new
and improved" component), and finally e) given the decision has been made to
remove the old component and replace it with the new one, what specific
connections need to be made to integrate that component into the system?

This is admittedly a rather ludicrous (and morbid) analogy, but it should shed a
little light on the question of 'why integrate?'. As for the question 'how to
integrate?', the analogy can again be used: if you cut something during the
removal of a component, you'll need to reconnect it (or cap it) when you bring in
a replacement. Note that in the case of merely "swapping" similar parts,
reconnections are fairly straightforward; it essentially reduces to a one-to-one
matchup of all loose ends of the system with those of the replacement
component. The problem becomes more difficult when the component to be
brought in is dissimilar in size, complexity or function, is built by someone other
than the original builders of the system, is based on different specs and
assumptions, etc. Ultimately, this kind of analogy points to the need for a
standard to which 'spare parts' or improved components should adhere; but
again, further discussions along those lines beiong in a separate report.

14

The 'Software Zoom' Concept

As stated earlier, we believe that the best way to model a large scale, complex
software system is to model different portions of the system at different levels of
detail, and to do such detailed analysis only when needed. A desirable situation
would be to build a simulation framework which would allow individual
portions of the simulation to be 'toggled' between a course representation of
each entity being modeled, and a detailed representation of that entity, to be
used only when a closer examination was warranted. Actually, this is not as new
an idea as it sounds - it's as old as the telescope!

Nearly everyone is familiar with the concept of 'zooming'; the act of expanding
the view of a specific area of interest. In a similar manner, the act of varying the
fidelity of a modeled entity for a more focused look into its workings Crn be
described as a 'software zoom'. It is this ability to replace abstractly modeled
entities with more and more detailed models that will ultimately allow validity
to be inherited into large-scale software systems.

Another Analogy

The benefits of having the ability to perform a software zoom should be obvious,
but how is it accomplished, and what are the implications? Another analogy
might be helpful here.

For this analogy, our real world system is the continental United States, and our
model of that system is a roadmap. Consider the woman planning a cross-
country trip, starting in Los Angeles, ending in New York City, with a 2 day
stopover in Topeka, Kansas to visit friends. Her primary goal is to get from the
west coast to the east coast, as easily as possible. To successfully accomplish that
goal, a roadmap comprised of all the main thoroughfares should be sufficient
for most of her trip. However, she may not be familiar with Kansas, or the best
way to get from the main highway to the smaller streets leading to her friends'
house. Therefore, what she would likely do when she reaches the Kansas state
line is to invoke a more detailed representation of that portion of the system -- a
Kansas state map -- which would include not only the main thoroughfares, but

15

also the smaller streets. In fact, when the time is right, she may have yet another
model of the system -- a Topeka city map -- which provides the necessary details
to bring her to her friends' house. Of course, when she leaves the house, then
Topeka and finally, Kansas, the more abstract representation of the real-world
system would be sufficient.

What then, in our analogy, is required when 'zooming' in on our traveler's area
of interest? Essentially, our removing the 'Kansas' portion of the coarsely
modeled system model is somewhat akin to removing the heart in the human
system analogy; therefore, according to the formula proposed above, we'd need
to determine what connections were severed, and resolve how best to handle
their reconnection (or capping). In this case, it reduces to the woman noting
what route she is on when she reaches the Kansas state line, locating that route
on her Kansas state map, and continuing her journey, using that more refined
model.

PART II: Battlefield Simulation: The Concepts are Applied

Validated Analytical Hierarchy of Models (VAHM)

The specific applications of software reuse and model integration of interest to
this report involve conducting simulation studies to evaluate combat mission
effectiveness. Specifically, we attempt to apply the theoretical concepts
discussed in the main body of the report to the problem of modeling the effects of
Electronic Combat (EC) in support of mission planning in battlefield scenarios,
as well as scenarios to assess the "value added" of Non-Cooperative Target
Identification (NCTI) techniques, within a simulated campaign. In addition to
the problems which are universally common to software reuse in general, some
domain-specific issues are introduced in studies of this sort. In contrast to earlier
building block applications of software reuse which, in general, use
decomposition schemes based primarily on the implicit functional hierarchy of
the system, this study includes another aspect which can be hierarchically
described; that being the degree of analysis possible at each level. In a 1979 Air
Force study, LCol (then Major) Glen Harris addressed this new aspect in
regards to analyzing force effectiveness, and introduced the concept of a
"validated analytical hierarchy of models", stating "Neither a highly detailed

16

approach nor a broad aggregate modeling approach by itself is adequate to
analyze the complex battlefield. Unless both approaches are used and carefully
integrated, the results obtained will not provide the insight required to
determine why one ensemble of systems should be preferred over another. An
integrated approach must be designed to answer several levels of questions as
to the causal relationships involved...". Accordingly, various working groups
within the Department of Defense defined a Validated Analytic Hierarchy of
Models (VAHM), composed of four levels of analysis; as follows:

Level I: System/Engineering Analysis. The analysis at this level primarily deals
with individual systems or components; e.g., jammers, sensors, transmitters,
antennas, etc. The objective is to measure the required and/or achieved
engineering-level data associated with, for example, Electronic Warfare
systems and their interactive effects with target systems [46]. The analysis at this
level (and therefore any Measure of Effectiveness associated with this level) is
limited to the effects of, in the case of an Electronic Combat scenario, a single
jamming component against a single target threat.

Level II: Platform Effects Analysis. At this level, the evaluation focuses on the
component being associated with a platform; e.g., a radar jammer installed on
an aircraft. The effectiveness of the installed system is then evaluated in the
context of a one-on-one or few-on-few analysis.

Level III: Mission Effectiveness Analysis. Analysis at this level assesses the
contribution of, for example, Electronic Combat or NCTI techniques to a combat
mission environment, including other aspects such as Command and Control,
time-sensitive maneuvers, and a defined enemy posture.

Level IV: Force Effectiveness Analysis. This encompasses all the activity
associated with operations in the context of joint Air Force/Army/Navy
campaigns against an enemy combined arms force, towards evaluating the
contribution of, for example, Electronic Combat support in such a campaign.

Under this hierarchical scheme, a distinction is made between vertical
integration and horizontal integration. Vertical integration refers to the ability
to pass data output of a model at one level of the hierarchy to the input of a

17

higher (or lower) level model. This is in consonance with the concept of the
UNIX pipeline method of integration discussed earlier. Another method of
vertical integration is effected by using lower level models as modules in higher
level models -- a 'software zoom'. For example, a Level I standard propagation
model could be used in a Level II Surface-to-Air weapons model, which could in
turn be used in a Level III mission effectiveness model. Vertical integration is
important because it provides a validated audit trail of higher-level results to
"hard" engineering data, range data, hybrid simulation outputs and/or flight
test data. The credibility of most of the upper-level modeling rests on the ability
to vertically integrate.

Horizontal integration (federation) of data refers to the accessing (by models at
all levels) of a master input/runtime database for data that is global in nature.
This concept eliminates the problem of needing multiple databases for multiple
models. When intelligence and other situational (state) changes require updating
of data, they are changed in one place only, with new values propagating to all
models that need to reflect those updates; analogous to the blackboard approach
followed in some disciplines of Artificial Intelligence.

Application 1: Electronic Combat Effectiveness

The specific problem which is the subject of this section deals with the lack of
fidelity of an existing mission planning tool. Although soundly based on
phenomenological and physical properties of barrage jamming (radiated power
against radiated power), the tool lacked the required depth, as far as simulating
existing Electronic Combat assets to the detail needed for real-life decision
making. As in other disciplines, when users required this additional detail, a
decision had to be made as to its implementation: rebuild or reuse. For the many
reasons described earlier, an integration approach was deemed 1) the most
attractive from a cost/time perspective, 2) the most intriguing from a research
and development standpoint, but 3) certainly the most difficult (and possibly
unattainable), from a realistic point of view.

18

A Solution

Complexities notwithstanding, an integration approach was pursued. First,
existing model repositories were surveyed, as to their compliance with the well-
designed criteria of the survey. For instance, each candidate model was
compared against such features as model availability, degree of validation,
modeling methodology (e.g. stochastic event scheduling versus deterministic
scripting), underlying assumptions, Measures of Effectiveness, host
software/hardware, dependencies on other models/databases, processing
modes (interactive versus batch), availability and currency of documentation,
and others too numerous to mention. Finally, three candidate models were
chosen, representative of a specific radar jammer, a specific communications
jammer and an aircraft dedicated to suppressing enemy air defense systems.
These models were obtained from their respective owning/maintaining
agencies, and were microscopically (and manually) studied to ascertain and
illucidate the necessary integration properties; such as input/output
characteristics, units, etc. It should be stressed here that this was a very time-
and manpower-intensive undertaking, necessitated in general because of the
absence of object-oriented principles in any of the chosen models.

Once modified (minimally, so as not to violate the requirement of maintaining
each model's standalone status), the three models were configured to run
synchronously -- embodying the 'software zoom' concept -- under the existing
simulation executive. Together, the integrated system is called the Electronic
Combat Effectiveness System (ECES), and runs on a VAX 11/780. At startup, the
three models were informed of the initial conditions of the scenario (e.g., each's
own flight path, the perceived threat laydown, geographical/terrain data, etc.),
which were, in general, required inputs of each to begin with. In addition, each
model contained (or read) its own local data, necessary for standalone
execution.

As the ECES model (the aggregate model) is run, messages are sent to the
individual (component) models to update positions, announce threat movements
and signal activity, and so on. In return, each model passes messages such as
flight path changes, jamming noise figures (if requested), or other information
pertinent to the mission. The aggregate model serves a dual purpose: it is the

19

orchestrator of the event script during the scenario (updating the information
common to all the models), as well as dynamically displaying all scenario
activities (common to all, or as specifically reported by each model) on a
graphics terminal.

The Electronic Combat Effectiveness System now runs as it did before its
decomposition; the difference with the current system is that validated jammer
characteristics are now explicitly modeled, and are inherited (via 'software
zoom') as needed. Another major plus is that the synergistic effects of the
Electronic Combat assets (taken pairwise or in total) can now be determined.
This offers an obvious improvement over the independent execution of the three
component models in standalone mode.

During the execution of the system, statistics are collected for ultimate
Measures of Effectiveness (MOEs) calculation, corresponding to the four levels
of the analysis hierarchy described earlier. For example, in determining mission-
level (Level III) effectiveness, a factor called "per cent neutralization" is
computed, comparing the ability of (for example) a Target Tracking Radar to
successfully track an incoming strike aircraft; both in the presence and absence of
jamming support. The actual MOEs and overall results of the asset tradeoffs,
while interesting, are beyond the scope of this report. What is of greater interest
is the fact that, despite the labor-intensive nature of the integration effort,
software reuse was possible, and actually (in this application) facilitated a
"total-is-greater-than-the-sum-of-its-parts" system which was not attainable
through independent execution of the component models.

Application 2: Non-Cooperative Target Identification (NCTI)

In general, the overall goal of the NCTI program is to assess the feasibility and
benefits of improving our aircraft's' long range identification capabilities and
techniques, in order to a) better employ beyond-visual- range (BVR) weapons, b)
avoid engagement of neutrals, c) reduce fratricide, d) identify enemy-controlled
Western-made aircraft and e) better manage and control the air battle. It is
immediately obvious that many, if not all, phases of the research and
development activity needed for these assessments will involve Modeling and
Simulation. Furthermore, it can be assumed that many, many facets of the air

20

battle will need to be accurately modeled, in order to provide the most realistic
assessments possible. Finally, from the discussions above, the conclusion must be
drawn that a multi-level model integration approach should be followed.

NCTI simulation activities currently underway in the Air Force involve
investigations and analyses at a variety of levels, embodying the ideas of the
Validated Analytical Hierarchy of Models discussed earlier. At the Electronic
Systems Division (ESD), the NCTI-related tasking of their Project Model office
calls for the assessment of NCTI solutions (or as they call it, Hostile Target
Identification solutions within a theater-level engagement, complete with all
aspects and influences of Command, Control, Communications and Intelligence
(C31) being modeled as well. Rome Laboratory, on the other hand, will initially
be investigating proposed advances to existing Electronic Support Measures
(ESM) equipment and techniques, and ultimately, developing and configuring
models of those advanced capabilities for transition to ESD's Modeling Analysis
Simulation Center (MASC) facility.

A Solution

Figure 2 pictorially I
suggests (without
specific details) how a. T SC SUPPRESSOR starts and rns to the point b. At that poin,. imginea 'cookie cutter

where a more detalled "zoom* Is needed. Small approach to making room for the detailed model

ESD might proceed arrows denote flight path; lare arrow denotes (TAC BRAWLER) to be Inserted. Freeze" the
all other input/control parameters to that point. eoecution of TAC SUPPRESSOR, determine all of

with the integration the connections cut by the cookie cutter, and
note the values of all those variables (i.e. the

of an air-to-air State of SUPPRESSOR at the time of the
"freeze')

engagement model
called TAC 0

BRAWLER,
into their

Level III (theater d. Run TAC BRAWLER wth that setup., ollec
level) model, TAC c. start TAC BRAWLER wth nuts set o outcomes and 'awaken TAc SUPPRESSOR w

reflect the state of TAC SUPRESSOR at the time updated state of scenario. TAG SUPPRESSOR

SUPPRESSOR. of the freeze. then continues.

Similarly, Rome Lab Figure 2: The 'Software Zoom' Concept Applied
will be integrating
more detailed Level I
(engineering level) components into TAC BRAWLER. Finally, Figure 3 shows
how the two organizations are cooperatively working toward the same end.

21

PART III: CONCLUSION

Despite documented prophesies to
the contrary, software reuse and model ,,E-Z.
integration will continue to grow. As TASPRoSW

expected improvements in
programming practices and LEM TIrA CRAwVA ER

standardization begin to materialize, ALXAyss1

reuse system development will migrate
from this awkward period of "working :TC.RA--

with the givens", towards the inception
of standard models, interfaces, and 1,.VE, I MMO

perhaps even packaged standard ANAYIS..

libraries. This next generation of
software system development will not

3: AN EXAMPLE OF MULTI-LEVEL MODEL INTEGRATIONbe without cost. There will be great 'T 3 HIN THE AIR FORCE'S HIERARCHY OF MODEL

outlays and sacrifices in all areas; not FRAMEWORK

the least of which will be obtaining
management support. But no matter the cost, no matter the effort, no matter the
level of resistance encountered, this technology area should be vigorously
pursued, as were many other unlikely, yet promising areas, which are now
standard practices. Simply put: In order to introduce validity -- and therefore
acceptance -- to a large-scale, theater level battlefield simulation, there is no
other alternative.

22

BIBLIOGRAPHY

1. R. Reese, D. L. Wyatt, "Software Reuse and Simulation", Proceedings of the 1987
Winter Simulation Conference

2. G. C. Vansteenkiste, "New Challenges in System Simulation", Proceedings of the
1985 Summer Computer Simulation Conference

3. K. J. Murray, S. V. Sheppard, "Automated Model Synthesis: Using Automatic
Programming and Expert Systems Techniques Toward Simulation Modeling",
Proceedings of the 1987 Winter Computer Simulation Conference

4. B. P. Zeigler, T. G. Kim, "The DEVS Formalism: Hierarchical, Modular Systems
Specification in an Object Oriented Framework", Proceedings of the 1987 Winter
Computer Simulation Conference

5. D. Kostelski, J. Buzacott, K. McKay, X. Liu, "Development and Validation of a
System Macro Model Using Isolated Micro Models", Proceedings of the 1987
Winter Computer Simulation Conference

6. R. G. Sargent, "An Overview of Verification and Validation of Simulation Models",
Proceedings of the 1987 Winter Computer Simulation Conference

7. B. P. Zeigler, "Hierarchical Modular Modeling/Knowledge Representation",
Proceedings of the 1987 Winter Computer Simulation Conference

8. B. P. Zeigler, T. I. Oren, "Multifaceted, Multiparadigm Modelling Perspectives:
Tools for the 90s", Proceedings of the 1987 Winter Computer Simulation
Conference

(). R. G. Sargent, "Joining Existing Simulation Programs", Proceedings of the 1987
Winter Computer Simulation Conference

10. A. I. Concepcion, S. J. Schon, "SAM - A Computer Aided Design Tool for
Specifying and Analyzing Modular, Hierarchical Systems", Proceedings of the 1987
Winter Computer Simulation Conference

11. J. W. Rozenblit, S. Sevinc, B. P. Zeigler, "Knowledge-Based Design of LANs Using
System Entity Structure Concepts", Proceedings of the 1987 Winter Computer
Simulation Conference

12. S. A. Shoaf, "A Modular Approach to the Simulation of Manufacturing
Processes", Proceedings of the 1983 Winter Computer Simulation Conference

23

13. K. J. Musselman, et al, "Practitioners' Views on Simulation", panel discussion
from the Proceedings of the 1983 Winter Computer Simulation Conference

14. W. T. Jones, B. J. Jones, "Computer Simulation Using Hierarchical Models",
Proceedings of the 6th Pittsburgh Conference, 1975

15. B. R. Konsynski, J. F. Nunamaker, "A Generalized Model for Computer-Aided
Process Organization in Design of Information Systems", Proceedings of the 6th
Pittsburgh Conference, 1975

16. D. W. Balmer, "Modeling Styles and Their Support in the CASM Environment",
Proceedings of the 1987 Winter Computer Simulation Conference

17. R. Prieto-Diaz, P. Freeman, "Classifying Software for Reusability", IEEE Software,
Jan 87, p 6

18. R. F. Kamel, "Effect of Modularity on System Evolution", IEEE Software, Jan 87,
p48

19. A. Reilly, "Roots of Reuse", IEEE Software, Jan 87, p4

20. B. D. Shriver, "Reuse Revisited", IEEE Software, Jan 87, p5

21. S. Chang, "Visual Languages: A Tutorial and Survey", IEEE Software, Jan 87, p2 9

22. W. Tracz, "Reusability Comes of Age", IEEE Software, Jan 87, p 6

23. P. G. Bassett, "Frame-Based Software Engineering", IEEE Software, Jan 87, p9

24. G. E. Kaiser, D. Garlan, "Melding Software Systems from Reusable Building
Blocks", IEEE Software, Jan 87, p17

25. B. A. Burton et al, "The Reusable Software Library", IEEE Software, Jan 87, p2 5

26. M. Lenz, H. A. Schmid, P. F. Wolf, "Software Reuse Through Building Blocks",
IEEE Software, Jan 87, p 34

27. A. Gargaro, T. L. Pappas, "Reusability Issues and Ada", IEEE Software, Jan 87,
p 4 3

28. S. N. Woodfield, D. W. Embley, D. T. Scott, "Can Programmers Reuse Software?",
IEEE Software, Jan 87, p52

29. G. Fischer, "Cognitive View of Reuse and Redesign", IEEE Software, Jan 87, p6 0

24

30. R. Conn, "ADA Software Repository", IEEE Software, Jan 87, p105

31. T. Biggerstaff, C. Richter, "Reusability Framework, Assessment, and Directions",
IEEE Software, Mar 87, p41

32. B. Meyer, "Reusability: The Case for Object-Oriented Design", IEEE Software,
Mar 87, p 5 0

33. K. W. Miller, L. J. Morell, F. Stevens, "Adding Data Abstraction to Fortran

Software", IEEE Software, Nov 88, p50

34. G. Gruman, "Early Reuse Lives Up To Its Promise", IEEE Software, Nov 88, p8 7

35. J. R. Emshoff, R. L. Sisson, "Design and Use of Simulation Models"

36. B. P. Zeigler, "Theory of Modeling and Simulation"

37. Dolk, B. Konsynski, "Knowledge Representation for Model Management
Systems",

38. 0. 1. Truncer, "Concepts and Criteria to Assess Acceptability of Simulation
Studies: A Frame of Reference", Communications of the ACM, Vol 24, No. 4, Apr 81

39. Klein, Konsynski, Beck, "A Linear Representation for Model Management in a
DSS", Journal of Management Information Systems, Vol II, No 2, Fall 85

40. McIntyre, Konsynski, Nunamaker, Jr., "Automating Planning Environments:
Knowledge Integration and Model Scripting", Journal of Management Information
Systems, Vol II, No 4, Spring 86

41. Liang, Ting-Peng, "Integrating Model Management with Data Management in
DSS", Decision Support Systems 1 (1985), p 2 2 1

42. Applegate, Konsynski, Nunamaker, Jr., "Model Management Systems: Design for
Decision Support", Decision Support Systems 2 (1986), p81

43. Konsynski, Sprague, "Future Research Directions in Model Management",
Decision Support Systems 2 (1986), p 103

44. Fedorowicz, Williams, "Representing Modeling Knowledge in an Intelligent
Decision Support System", Decision Support Systems 2 (1986), p 3

25

45. G. L. Harris, "Computer Models, Laboratory Simulators and Test Ranges:
Meeting the Challenge of Estimating Tactical Force Effectiveness in the 1980s",
1979

46. G. R. Dougherty, "On What Basis, EW?", Journal of Electronic Defense, Oct 84

47. A. F. Sisti, et al, "Electronic Combat Development and Demonstration
Component", RADC-TM-86-9, Aug 86, B104997.

48. A. F. Sisti, et al, "Automated Intelligence Decision Aids", RADC-TR-87-17, Feb
8 7, B109815.

49. A. F. Sisti, "A Model Integration Approach to Electronic Combat Effectiveness
Evaluation", RADC-TR-89-183, Oct 89, A215804.

50. M. Ringler and G. Brown, "Electronic Combat Effectiveness Study", RADC-TR-88-
276, Nov 88, B132176L.

26

MISSION

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C 31) activities

for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C31 systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas

including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.

~q-J

